|
Prev | Next | _reference |
| A | |
|
age_avg_table | The Age Average Table |
|
age_table | The Age Table |
|
age_table.py | age_table: Example and Test |
|
average_integrand | Compute The Average Integrand |
|
avg_integrand | Model for the Average Integrand |
|
avgint_table | The avgint Table: Defines Average Integrand Cases |
|
avgint_table.py | avgint_table: Example and Test |
| B | |
|
bilinear | dismod_at Bilinear Interpolation |
|
bnd_mulcov_command | Bound The Covariate Multiplier Absolute Data Effect |
|
bnd_mulcov_table | The Covariate and Multiplier Bound Table |
| C | |
|
censor_density | The Censored Gaussian and Laplace Densities |
|
command | The dismod_at Commands |
|
connection_file | Get File Name For a Database Connection |
|
covariate_table | The Covariate Table |
|
covariate_table.py | covariate_table: Example and Test |
|
create_connection | Create a Python sqlite3 Database Connection |
|
create_database | Create a Dismod_at Database |
|
create_database.py | create_database: Example and Test |
|
create_table | Create a Database Table |
|
create_table.py | create_table and Unicode: Example and Test |
|
csv2db_command | Conversion of a Csv File to a Dismod_at Database |
| D | |
|
data_density_command | Data Density Command: Change the Density for an Integrand |
|
data_flow | The Dismod_at Data Flow |
|
data_like | Data Likelihood and Weighted Residuals |
|
data_sim_table | Simulated Measurements and Adjusted Standard Deviations |
|
data_subset_table | The Data Subset Table |
|
data_table | The Data Table |
|
data_table.py | data_table: Example and Test |
|
database | The Dismod_at Database Tables |
|
db2csv_command | Create Csv Files that Summarize The Database |
|
db2csv_command.py | db2csv Command: Example and Test |
|
density_table | The Density Table |
|
density_table.py | density_table: Example and Test |
|
depend_command | The Depend Command |
|
depend_command.py | depend Command: Example and Test |
|
depend_var_table | Which Variables The Model Depends On |
|
dismod_at | dismod_at-20221105: User Documentation and API |
|
dismodat.py | Python Program Syntax |
|
dock_dismod_at.sh | Install and Run dismod_at in a Docker Image |
| E | |
|
example_install.sh | An Example Installation |
| F | |
|
fit_command | The Fit Command |
|
fit_command.py | fit Command: Example and Test |
|
fit_data_subset_table | The Model and Weighted Residuals Corresponding to a Fit |
|
fit_var_table | The Optimization Results for Variables |
|
fixed_diff | Fixed Effects Differences Density Function |
|
fixed_prior | Prior for Fixed Effect Values |
|
fixed_value | The Fixed Effects Value Density Function |
| G | |
|
get_name_type | Get Column Names and Types in a Table |
|
get_name_type.py | get_name_type: Example and Test |
|
get_row_list | Get Data From a Table |
|
get_row_list.py | get_row_list: Example and Test |
|
get_started | Dismod_at Getting Started Examples / Tests |
|
get_started_db.py | Create get_started Input Tables: Example and Test |
|
get_table_dict | Get All Data From a Table |
|
get_table_dict.py | get_table_dict: Example and Test |
| H | |
|
hes_fixed_table | Hessian of The Fixed Effect Objective Function |
|
hes_random_table | Hessian of The Random Effect Objective Function |
|
hold_out_command | Hold Out Command: Randomly Sub-sample The Data |
| I | |
|
ihme_db.sh | Make a Local Copy an IHME Dismod_at Database |
|
init_command | The Initialize Command |
|
init_command.py | init Command: Example and Test |
|
input | Tables That Are Only Used as Inputs |
|
install | Installing dismod_at |
|
install_unix | Installing dismod_at in Unix |
|
integrand_table | The Integrand Table |
|
integrand_table.py | integrand_table: Example and Test |
| L | |
|
log_table | The Log Table |
| M | |
|
math_abstract | An Introduction To The Mathematics of Dismod_at |
|
math_ode | The Dismod_at Ordinary Differential Equation |
|
metropolis | Metropolis MCMC Algorithm |
|
mixed_info_table | The CppAD Mixed Information Table |
|
model | The Age-Time Dismod Model |
|
model_variables | The Model Variables |
|
modify_command | Modify a Column of an Sqlite Database |
|
modify_command.py | modify Command: Example and Test |
|
mulcov_table | The mulcov Table: Covariate Multipliers |
|
mulcov_table.py | mulcov_table: Example and Test |
| N | |
|
node_table | The Node Table |
|
node_table.py | node_table: Example and Test |
|
nslist_pair_table | Lists of Node Smoothing Pairs |
|
nslist_pair_table.py | nslist_pair_table: Example and Test |
|
nslist_table | The Node Smoothing List Table |
|
nslist_table.py | nslist_table: Example and Test |
|
numeric_average | Numerical Approximation of Average Integrands |
| O | |
|
old2new_command | Convert an Old Database to New Format |
|
option_default | List of Option Default Values |
|
option_table | The Option Table |
|
option_table.py | option_table: Example and Test |
| P | |
|
perturb_command | Perturb Command: Random Change to Start or Scale Tables |
|
plot_curve | Plot Log-Scaled Values With Respect To Age and Time |
|
plot_data_fit | Plot The Data Fit By Integrand |
|
plot_rate_fit | Plot The Rates for a Fit |
|
posterior | Simulating Posterior Distribution for Model Variables |
|
predict_command | The Predict Command |
|
predict_command.py | predict Command: Example and Test |
|
predict_table | The Predict Table: Average Integrand Predictions |
|
prev_dep | Prevalence Does Not Depend On Other Cause Mortality |
|
prevalence_ode | The Prevalence Only ODE |
|
prior_sim_table | Simulated Variation in Prior |
|
prior_table | The Prior Table |
|
prior_table.py | prior_table: Example and Test |
|
python | Python Utilities |
| R | |
|
random_diff | Random Effects Differences Density Function |
|
random_prior | Prior for Random Effect Values |
|
random_value | The Random Effects Value Density Function |
|
rate_table | The Rate Table |
|
rate_table.py | rate_table: Example and Test |
|
release_notes | Changes and Additions to Dismod_at |
|
replace_table | Replace A a Table |
|
replace_table.py | replace_table: Example and Test |
|
run_cmake.sh | bin/run_cmake.sh: User Configuration Options |
| S | |
|
sample_command | The Sample Command |
|
sample_command.py | sample Command: Example and Test |
|
sample_table | The Sample Table: Samples of Variable Values |
|
scale_var_table | Scaling Fixed Effects Objective and Constraints |
|
set_command | Directly Setting Table Values |
|
set_command.py | set Command: Example and Test |
|
simulate_command | The Simulate Command |
|
simulate_command.py | simulate Command: Example and Test |
|
smooth_dage | Prior Density Function for Smoothing Age Difference |
|
smooth_dtime | Prior Density Function for Smoothing Time Difference |
|
smooth_grid_table | The Smooth Grid Table |
|
smooth_grid_table.py | smooth_grid_table: Example and Test |
|
smooth_table | The Smoothing Table |
|
sql_command | Execute an SQL command |
|
start_var_table | Starting Values Used During a Fit |
|
statistic | Some Statistical Function Definitions |
|
subgroup_table | The Subgroup Table |
|
system_command_prc | Print Run and Check a System Command |
| T | |
|
time_table | The Time Table |
|
time_table.py | time_table: Example and Test |
|
trace_fixed_table | The Fixed Effects Optimization Trace Table |
|
truth_var_table | True Values Used During Simulations |
| U | |
|
unicode_tuple | Convert an Iterable Object to a Unicode String |
|
unicode_tuple.py | unicode_tuple: Example and Test |
|
user_age_avg_split.py | Non-uniform Age Average Grid |
|
user_average_integrand.py | Using the Python average_integrand Utility |
|
user_bilevel_random.py | Example Fitting With Two Levels of Random Effects |
|
user_bnd_mulcov.py | Bounding Covariate Multipliers Absolute Data Effect |
|
user_cascade.py | Generating Priors For Next Level Down Node Tree |
|
user_censor.py | Fitting Data That Has Negative Values Censored |
|
user_change_grid.py | Remove an Age or Time From a Smoothing |
|
user_compress.py | Using Data Interval Compression |
|
user_connection_file.py | Example Using connection_file |
|
user_const_random.py | Fitting With Non-Zero Constant Random Effects in Smoothing Grid |
|
user_const_value.py | Constrain Omega Using const_value |
|
user_continue_fit.py | Continuing a Fit From Where it Left Off |
|
user_covid_19.py | Model The Covid-19 Epidemic |
|
user_csv2db.py | csv2db_command: Example and Test |
|
user_data_density.py | Fit With Outliers Using Data Density Command |
|
user_data_sim.py | Explanation of Simulated Data Table, data_sim |
|
user_diabetes.py | An Example / Speed Test Fitting Simulated Diabetes Data |
|
user_diff_constraint.py | Fitting with Constraints on Differences in Age and Time |
|
user_example | User Examples and Tests |
|
user_fit_fixed_both.py | Fit Fixed First Then Both |
|
user_fit_meas_noise.py | Group Measurement Noise Covariate Multipliers, Gamma |
|
user_fit_random.py | Fitting Just Random Effects |
|
user_fit_sim.py | Fitting Simulated Data Example |
|
user_group_mulcov.py | Using Group Covariate Multipliers |
|
user_hes_fixed_math.py | Check the Hessian of the Fixed Effects Objective |
|
user_hes_random.py | Check the Hessian of the Random Effects Objective |
|
user_hold_out_1.py | Using hold_out in Data, Subset Data, and Option Tables |
|
user_hold_out_2.py | hold_out Command: Balancing Sex Covariate Values |
|
user_ill_condition.py | An Ill Conditioned Example Where Re-Scaling is Helpful |
|
user_jump_at_age.py | Zero Rate Until a Jump at a Known Age |
|
user_lasso_covariate.py | Using Lasso on Covariate Multiplier |
|
user_metropolis.py | Predict Average Integrand Using Results of a Fit |
|
user_mulstd.py | Estimating Smoothing Standard Deviation Multiplies |
|
user_no_children.py | Case with no Children; i.e., no Random Effects |
|
user_one_function.py | Fitting One Function of Two Variables |
|
user_plot_curve.py | Example Plotting Log-Scaled Values w.r.t Age and Time |
|
user_plot_data_fit.py | Example Plotting The Data and Its Fit |
|
user_plot_rate_fit.py | Example Plotting The Rates for a Fit |
|
user_predict_fit.py | Predict Average Integrand Using Results of a Fit |
|
user_predict_mulcov.py | Predict Covariate Multiplier Values |
|
user_re_scale.py | Case Where Re-Scaling is Useful |
|
user_residual.py | Weighted Residuals |
|
user_sample_asy.py | Sample from Asymptotic Distribution for Model Variables |
|
user_sample_asy_sim.py | Sampling From The Asymptotic Distribution for a Simulated Data Fit |
|
user_sample_sim.py | Sample Posterior Using Simulated Data |
|
user_sim_log.py | Simulating Data with Log Transformed Distribution |
|
user_speed.py | A Simulate Data Speed Test |
|
user_subgroup_mulcov.py | Example Fitting With Subgroup Covariate Multipliers |
|
user_sum_residual.py | Sum of Residuals at Optimal Estimate |
|
user_system_command_prc.py | Example Using system_command_prc |
|
user_trace_init.py | Using Initialization Trace Option |
|
user_trapezoidal.py | Using the Trapezoidal ODE Solver |
|
user_warm_start.py | Continuing a Fit Using Ipopt Warm Start |
|
user_zsum_child_rate.py | Constrain Sum of Child Rate Effect to Zero |
|
user_zsum_mulcov_meas.py | Constrain Sum of Subgroup Measurement Covariate Multipliers to Zero |
|
user_zsum_mulcov_rate.py | Constrain Sum of Subgroup Rate Covariate Multipliers to Zero |
| V | |
|
var_table | Identifying Model Variables |
|
variable_prior | Prior for the Model Variables |
| W | |
|
weight_grid_table | The Weight Grid Table |
|
weight_grid_table.py | weight_grid_table: Example and Test |
|
weight_table | The Weight Table |
|
whats_new_2015 | Changes and Additions to Dismod_at During 2015 |
|
whats_new_2016 | Changes and Additions to Dismod_at During 2016 |
|
whats_new_2017 | Changes and Additions to Dismod_at During 2017 |
|
whats_new_2018 | Changes and Additions to Dismod_at During 2018 |
|
whats_new_2019 | Changes and Additions to Dismod_at During 2019 |
|
whats_new_2020 | Changes and Additions to Dismod_at During 2020 |
|
whats_new_2021 | Changes and Additions to Dismod_at During 2021 |
|
whats_new_2022 | Changes and Additions to Dismod_at During 2022 |
|
wish_list | Dismod_at Wish List |