![]() |
Prev | Next |
python3_executable example/user/name
where python3_executable
is the python3 program and
name
is the name of the example.
The name of the example
includes the .py
extension at the end,
but does not include user_
at the front.
user_speed.py
example is an exception; see its
syntax
.
build/example/user/example.db
which can be inspected using any sqlite viewer; e.g.,
http://sqlitebrowser.org/
.
user_age_avg_split.py | Non-uniform Age Average Grid |
user_average_integrand.py | Using the Python average_integrand Utility |
user_bilevel_random.py | Example Fitting With Two Levels of Random Effects |
user_bnd_mulcov.py | Bounding Covariate Multipliers Absolute Data Effect |
user_cascade.py | Generating Priors For Next Level Down Node Tree |
user_censor.py | Fitting Data That Has Negative Values Censored |
user_change_grid.py | Remove an Age or Time From a Smoothing |
user_compress.py | Using Data Interval Compression |
user_connection_file.py | Example Using connection_file |
user_const_value.py | Constrain Omega Using const_value |
user_continue_fit.py | Continuing a Fit From Where it Left Off |
user_covid_19.py | Model The Covid-19 Epidemic |
user_csv2db.py | csv2db_command: Example and Test |
user_data_density.py | Fit With Outliers Using Data Density Command |
user_data_sim.py | Explanation of Simulated Data Table, data_sim |
user_diabetes.py | An Example / Speed Test Fitting Simulated Diabetes Data |
user_fit_fixed_both.py | Fit Fixed First Then Both |
user_fit_meas_noise.py | Group Measurement Noise Covariate Multipliers, Gamma |
user_fit_random.py | Fitting Just Random Effects |
user_fit_sim.py | Fitting Simulated Data Example |
user_group_mulcov.py | Using Group Covariate Multipliers |
user_hes_fixed_math.py | Check the Hessian of the Fixed Effects Objective |
user_hes_random.py | Check the Hessian of the Random Effects Objective |
user_hold_out_1.py | Using hold_out in Data, Subset Data, and Option Tables |
user_hold_out_2.py | hold_out Command: Balancing Sex Covariate Values |
user_ill_condition.py | An Ill Conditioned Example Where Re-Scaling is Helpful |
user_jump_at_age.py | Zero Rate Until a Jump at a Known Age |
user_lasso_covariate.py | Using Lasso on Covariate Multiplier |
user_mulstd.py | Estimating Smoothing Standard Deviation Multiplies |
user_no_children.py | Case with no Children; i.e., no Random Effects |
user_one_function.py | Fitting One Function of Two Variables |
user_plot_curve.py | Example Plotting Log-Scaled Values w.r.t Age and Time |
user_plot_data_fit.py | Example Plotting The Data and Its Fit |
user_plot_rate_fit.py | Example Plotting The Rates for a Fit |
user_predict_fit.py | Predict Average Integrand Using Results of a Fit |
user_predict_mulcov.py | Predict Covariate Multiplier Values |
user_residual.py | Weighted Residuals |
user_sample_asy.py | Sample from Asymptotic Distribution for Model Variables |
user_sample_asy_sim.py | Sampling From The Asymptotic Distribution for a Simulated Data Fit |
user_sample_sim.py | Sample Posterior Using Simulated Data |
user_sim_log.py | Simulating Data with Log Transformed Distribution |
user_speed.py | A Simulate Data Speed Test |
user_subgroup_mulcov.py | Example Fitting With Subgroup Covariate Multipliers |
user_sum_residual.py | Sum of Residuals at Optimal Estimate |
user_system_command_prc.py | Example Using system_command_prc |
user_trace_init.py | Using Initialization Trace Option |
user_trapezoidal.py | Using the Trapezoidal ODE Solver |
user_warm_start.py | Continuing a Fit Using Ipopt Warm Start |
user_zsum_child_rate.py | Constrain Sum of Child Rate Effect to Zero |
user_zsum_mulcov_meas.py | Constrain Sum of Subgroup Measurement Covariate Multipliers to Zero |
user_zsum_mulcov_rate.py | Constrain Sum of Subgroup Rate Covariate Multipliers to Zero |
user_metropolis.py | Predict Average Integrand Using Results of a Fit |
user_const_random.py | Fitting With Non-Zero Constant Random Effects in Smoothing Grid |
user_diff_constraint.py | Fitting with Constraints on Differences in Age and Time |
user_re_scale.py | Case Where Re-Scaling is Useful |