Prev
Next
Index->
contents
reference
index
search
external
Up->
dismod_at
user_example
user_zsum_mulcov_rate.py
user_zsum_mulcov_rate.py
@(@\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\W}[1]{ \; #1 \; }@)@This is dismod_at-20221105 documentation: Here is a link to its
current documentation
.
Constrain Sum of Subgroup Rate Covariate Multipliers to Zero
See Also
Purpose
Problem Parameters
Data Simulation
Nodes
Model Variables
Source Code
See Also
user_zsum_child_rate.py
,
user_zsum_mulcov_meas.py
Purpose
This example demonstrates using
The zero_sum_mulcov_group
to improve the speed and accuracy of estimation of the fixed effects.
Problem Parameters
number_data = 50
iota_parent = 1e-2
rho_parent = 2e-2
subgroup_mulcov = 0.2 ;
measurement_cv = 0.01
Data Simulation
The true rate for the parent region north_america
,
used for simulating data, are
iota_parent
and
rho_parent
problem parameters.
The
subgroup covariate multipliers
for canada
is
subgroup_mulcov
and for the united_states
is
- subgroup_mulcov
.
These multipliers effect the rates (not the measurements).
Nodes
There are just three nodes for this example,
The parent node, north_america
, and the two child nodes
united_states
and canada
.
The child rate effects are constrained to be
zero because we use subgroup covariate multipliers in their place.
Model Variables
The non-zero fixed effects for this example are
iota
and
rho
for the parent node north_america
.
The non-zero random effects are the subgroup rate covariate multipliers
for the united_states
and canada
.
The parent rates and subgroup covariate multipliers use a grid with
one point in age and two points in time. Thus there are six model variables
for each rate, two for the parent rates and four for the
covariate multipliers.
The resulting rates will be constant
in age and constant in time except between the two time grid points
where it is linear.
Source Code
# ------------------------------------------------------------------------
# begin problem parameters
number_data = 50
iota_parent = 1e-2
rho_parent = 2e-2
subgroup_mulcov = 0.2 ;
measurement_cv = 0.01
# end problem parameters
# ------------------------------------------------------------------------
import sys
import os
import copy
import math
import random
import time
test_program = 'example/user/zsum_mulcov_rate.py'
if sys. argv[ 0 ] != test_program or len ( sys. argv) != 1 :
usage = 'python3 ' + test_program + '\n'
usage += 'where python3 is the python 3 program on your system\n'
usage += 'and working directory is the dismod_at distribution directory\n'
sys. exit ( usage)
print ( test_program)
#
# import dismod_at
local_dir = os. getcwd () + '/python'
if ( os. path. isdir ( local_dir + '/dismod_at' ) ) :
sys. path. insert ( 0 , local_dir)
import dismod_at
#
# change into the build/example/user directory
if not os. path. exists ( 'build/example/user' ) :
os. makedirs ( 'build/example/user' )
os. chdir ( 'build/example/user' )
# ------------------------------------------------------------------------
python_seed = int ( time. time () )
random. seed ( python_seed )
# ------------------------------------------------------------------------
# Note that the a, t values are not used for this example
def example_db ( file_name) :
def fun_rate_subgroup ( a, t) :
return ( 'prior_rate_subgroup' , None, 'prior_gauss_diff' )
def fun_rate_parent ( a, t) :
return ( 'prior_rate_parent' , None, 'prior_gauss_diff' )
import dismod_at
# ----------------------------------------------------------------------
# age list
age_list = [ 0.0 , 50.0 , 100.0 ]
#
# time list
time_list = [ 1990.0 , 2010.0 ]
#
# integrand table
integrand_table = [
{ 'name' : 'Sincidence' },
{ 'name' : 'remission' }
]
#
# node table: north_america -> (united_states, canada)
node_table = [
{ 'name' : 'north_america' , 'parent' : '' },
{ 'name' : 'united_states' , 'parent' : 'north_america' },
{ 'name' : 'canada' , 'parent' : 'north_america' }
]
#
# subgroup_table
subgroup_table = [
{ 'subgroup' : 'none' , 'group' : 'none' },
{ 'subgroup' : 'united_states' , 'group' : 'north_america' },
{ 'subgroup' : 'canada' , 'group' : 'north_america' },
]
#
# mulcov table
mulcov_table = [
{ # subgroup covariate multiplers effecting iota
'covariate' : 'one' ,
'type' : 'rate_value' ,
'effected' : 'iota' ,
'group' : 'north_america' ,
'smooth' : None,
'subsmooth' : 'smooth_rate_subgroup'
},{ # subgroup covariate multipliers effecting rho
'covariate' : 'one' ,
'type' : 'rate_value' ,
'effected' : 'rho' ,
'group' : 'north_america' ,
'smooth' : None,
'subsmooth' : 'smooth_rate_subgroup'
}
]
#
# weight table:
weight_table = list ()
#
# covariate table: no covriates
covariate_table = [
{ 'name' : 'one' , 'reference' : 0.0 , 'max_difference' : None }
]
#
# avgint table: same order as list of integrands
avgint_table = list ()
#
# nslist_table:
nslist_table = dict ()
# ----------------------------------------------------------------------
# data table: same order as list of integrands
data_table = list ()
# write out data
row = {
'density' : 'gaussian' ,
'weight' : '' ,
'hold_out' : False,
'age_lower' : 50.0 ,
'age_upper' : 50.0 ,
'one' : 1.0 ,
}
for data_id in range ( number_data) :
if data_id % 3 == 0 :
row[ 'node' ] = 'north_america'
row[ 'subgroup' ] = 'none'
row[ 'data_name' ] = 'na_' + str ( data_id / 2 )
effect_true = 0.0
if data_id % 3 == 1 :
row[ 'node' ] = 'united_states'
row[ 'subgroup' ] = 'united_states'
row[ 'data_name' ] = 'us_' + str ( data_id / 2 )
effect_true = - subgroup_mulcov
if data_id % 3 == 2 :
row[ 'node' ] = 'canada'
row[ 'subgroup' ] = 'canada'
row[ 'data_name' ] = 'ca_' + str ( data_id / 2 )
effect_true = + subgroup_mulcov
if data_id % 2 == 0 :
row[ 'time_lower' ] = 1990.0
row[ 'time_upper' ] = 1990.0
else :
row[ 'time_lower' ] = 2010.0
row[ 'time_upper' ] = 2010.0
#
if data_id < number_data / 2 :
iota_true = math. exp ( effect_true) * iota_parent
row[ 'integrand' ] = 'Sincidence'
row[ 'meas_std' ] = iota_true * measurement_cv
noise = iota_true * random. gauss ( 0.0 , measurement_cv)
row[ 'meas_value' ] = iota_true + noise
else :
rho_true = math. exp ( effect_true) * rho_parent
row[ 'integrand' ] = 'remission'
row[ 'meas_std' ] = rho_true * measurement_cv
noise = rho_true * random. gauss ( 0.0 , measurement_cv)
row[ 'meas_value' ] = rho_true + noise
#
data_table. append ( copy. copy ( row) )
#
# ----------------------------------------------------------------------
# prior_table
prior_table = [
{ # prior_rate_parent
'name' : 'prior_rate_parent' ,
'density' : 'uniform' ,
'lower' : min ( iota_true, rho_true) / 100.0 ,
'upper' : max ( iota_true, rho_true) * 100.0 ,
'mean' : ( iota_true + rho_true),
},{ # prior_rate_subgroup
'name' : 'prior_rate_subgroup' ,
'density' : 'gaussian' ,
'mean' : 0.0 ,
'std' : 100.0 , # very large so like a uniform distribution
},{ # prior_gauss_diff
'name' : 'prior_gauss_diff' ,
'density' : 'gaussian' ,
'mean' : 0.0 ,
'std' : 100.0 , # very large so like uniform
}
]
# ----------------------------------------------------------------------
# smooth table
smooth_table = [
{ # smooth_rate_subgroup
'name' : 'smooth_rate_subgroup' ,
'age_id' : [ 0 ],
'time_id' : [ 0 , 1 ],
'fun' : fun_rate_subgroup
},{ # smooth_rate_parent
'name' : 'smooth_rate_parent' ,
'age_id' : [ 0 ],
'time_id' : [ 0 , 1 ],
'fun' : fun_rate_parent
}
]
# ----------------------------------------------------------------------
# rate table
rate_table = [
{
'name' : 'iota' ,
'parent_smooth' : 'smooth_rate_parent' ,
'child_smooth' : None,
},{
'name' : 'rho' ,
'parent_smooth' : 'smooth_rate_parent' ,
'child_smooth' : None,
}
]
# ----------------------------------------------------------------------
# option_table
option_table = [
{ 'name' : 'parent_node_name' , 'value' : 'north_america' },
{ 'name' : 'zero_sum_mulcov_group' , 'value' : 'north_america' },
{ 'name' : 'random_seed' , 'value' : '0' },
{ 'name' : 'ode_step_size' , 'value' : '10.0' },
{ 'name' : 'rate_case' , 'value' : 'iota_pos_rho_pos' },
{ 'name' : 'quasi_fixed' , 'value' : 'true' },
{ 'name' : 'derivative_test_fixed' , 'value' : 'first-order' },
{ 'name' : 'max_num_iter_fixed' , 'value' : '100' },
{ 'name' : 'print_level_fixed' , 'value' : '0' },
{ 'name' : 'tolerance_fixed' , 'value' : '1e-12' },
{ 'name' : 'derivative_test_random' , 'value' : 'second-order' },
{ 'name' : 'max_num_iter_random' , 'value' : '100' },
{ 'name' : 'print_level_random' , 'value' : '0' },
{ 'name' : 'tolerance_random' , 'value' : '1e-10' }
]
# ----------------------------------------------------------------------
# create database
dismod_at. create_database (
file_name,
age_list,
time_list,
integrand_table,
node_table,
subgroup_table,
weight_table,
covariate_table,
avgint_table,
data_table,
prior_table,
smooth_table,
nslist_table,
rate_table,
mulcov_table,
option_table
)
# ----------------------------------------------------------------------
# ===========================================================================
# Create database and run init, start, fit with zero sum for random effects
file_name = 'example.db'
example_db ( file_name)
#
program = '../../devel/dismod_at'
dismod_at. system_command_prc ([ program, file_name, 'init' ])
dismod_at. system_command_prc ([ program, file_name, 'fit' , 'both' ])
# -----------------------------------------------------------------------
# connect to database
new = False
connection = dismod_at. create_connection ( file_name, new)
# -----------------------------------------------------------------------
# check the zero random effects solution
#
# get variable and fit_var tables
var_table = dismod_at. get_table_dict ( connection, 'var' )
fit_var_table = dismod_at. get_table_dict ( connection, 'fit_var' )
rate_table = dismod_at. get_table_dict ( connection, 'rate' )
node_table = dismod_at. get_table_dict ( connection, 'node' )
time_table = dismod_at. get_table_dict ( connection, 'time' )
subgroup_table = dismod_at. get_table_dict ( connection, 'subgroup' )
#
# For each rate (iota and rho) there are two fixed effects.
# In addition, for each rate and each subgroup there are two random effects.
# Thus there are four fixed effects and 8 random effects.
n_var = len ( var_table)
assert n_var == 12
#
# initialize sum of random effects for each rate and time
sum_random = {
'iota' : [ 0.0 , 0.0 ],
'rho' : [ 0.0 , 0.0 ]
}
# check of values uses the fact that the data density is Gaussian
count_random = 0
ok = True
for var_id in range ( n_var ) :
var_type = var_table[ var_id][ 'var_type' ]
rate_id = var_table[ var_id][ 'rate_id' ]
rate_name = rate_table[ rate_id][ 'rate_name' ]
#
if var_type == 'rate' :
node_id = var_table[ var_id][ 'node_id' ]
node_name = node_table[ node_id][ 'node_name' ]
else :
assert var_type == 'mulcov_rate_value'
group_id = var_table[ var_id][ 'group_id' ]
assert group_id == None
subgroup_id = var_table[ var_id][ 'subgroup_id' ]
node_name = subgroup_table[ subgroup_id][ 'subgroup_name' ]
#
# note there are only two time_id values in time_table
time_id = var_table[ var_id][ 'time_id' ]
time = time_table[ time_id][ 'time' ]
value = fit_var_table[ var_id][ 'fit_var_value' ]
#
if node_name == 'north_america' :
if rate_name == 'iota' :
relerr = value / iota_parent - 1.0
else :
relerr = value / rho_parent - 1.0
elif node_name == 'canada' :
relerr = value / subgroup_mulcov - 1.0
else :
assert node_name == 'united_states'
relerr = - value / subgroup_mulcov - 1.0
if abs ( relerr) > 0.1 :
print ( 'node_name, relerr=' , node_name, relerr)
print ( 'python_seed = ' , python_seed)
assert False
if node_name != 'north_america' :
sum_random[ rate_name][ time_id] += value
count_random += 1
assert count_random == 8
for rate in [ 'iota' , 'rho' ] :
for time_id in [ 0 , 1 ] :
if ( abs ( sum_random[ rate][ time_id] ) ) > 1e-9 :
print ( 'rate, sum random = ' , rate, sum_random[ rate][ time_id] )
print ( 'python_seed = ' , python_seed)
assert False
#
# -----------------------------------------------------------------------
print ( 'zsum_mulcov_rate.py: OK' )
Input File: example/user/zsum_mulcov_rate.py