Prev Next a_fun_reverse_xam.m Headings

@(@\newcommand{\B}[1]{ {\bf #1} } \newcommand{\R}[1]{ {\rm #1} }@)@
Octave: Reverse Mode AD: Example and Test
function ok = a_fun_reverse_xam()
     %
     % load the Cppad Swig library
     m_cppad
     %
     % initialize return variable
     ok = true;
     % -----------------------------------------------------------------------
     % number of dependent and independent variables
     n_dep = 1;
     n_ind = 3;
     %
     % create the independent variables ax
     xp = m_cppad.vec_double(n_ind);
     for i = [ 0 :(n_ind -1) ]
          xp(i) = i;
     end
     ax = m_cppad.independent(xp);
     %
     % create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
     ax_0 = ax(0);
     ax_1 = ax(1);
     ax_2 = ax(2);
     ay = m_cppad.vec_a_double(n_dep);
     ay(0) = ax_0 * ax_1 * ax_2;
     %
     % define af corresponding to f(x) = x_0 * x_1 * x_2
     af = m_cppad.a_fun(ax, ay);
     % -----------------------------------------------------------------------
     % define          X(t) = (x_0 + t, x_1 + t, x_2 + t)
     % it follows that Y(t) = f(X(t)) = (x_0 + t) * (x_1 + t) * (x_2 + t)
     % and that       Y'(0) = x_1 * x_2 + x_0 * x_2 + x_0 * x_1
     % -----------------------------------------------------------------------
     % zero order forward mode
     p = 0;
     xp(0) = 2.0;
     xp(1) = 3.0;
     xp(2) = 4.0;
     yp = af.forward(p, xp);
     ok = ok && yp(0) == 24.0;
     % -----------------------------------------------------------------------
     % first order reverse (derivative of zero order forward)
     % define G( Y ) = y_0 = x_0 * x_1 * x_2
     q = 1;
     yq1 = m_cppad.vec_double(n_dep);
     yq1(0) = 1.0;
     xq1 = af.reverse(q, yq1);
     % partial G w.r.t x_0
     ok = ok && xq1(0) == 3.0 * 4.0 ;
     % partial G w.r.t x_1
     ok = ok && xq1(1) == 2.0 * 4.0 ;
     % partial G w.r.t x_2
     ok = ok && xq1(2) == 2.0 * 3.0 ;
     % -----------------------------------------------------------------------
     % first order forward mode
     p = 1;
     xp(0) = 1.0;
     xp(1) = 1.0;
     xp(2) = 1.0;
     yp = af.forward(p, xp);
     ok = ok && yp(0) == 3.0*4.0 + 2.0*4.0 + 2.0*3.0;
     % -----------------------------------------------------------------------
     % second order reverse (derivative of first order forward)
     % define G( y_0^0 , y_0^1 ) = y_0^1
     % = x_1^0 * x_2^0  +  x_0^0 * x_2^0  +  x_0^0  *  x_1^0
     q = 2;
     yq2 = m_cppad.vec_double(n_dep * q);
     yq2(0 * q + 0) = 0.0; % partial of G w.r.t y_0^0
     yq2(0 * q + 1) = 1.0; % partial of G w.r.t y_0^1
     xq2 = af.reverse(q, yq2);
     % partial G w.r.t x_0^0
     ok = ok && xq2(0 * q + 0) == 3.0 + 4.0;
     % partial G w.r.t x_1^0
     ok = ok && xq2(1 * q + 0) == 2.0 + 4.0;
     % partial G w.r.t x_2^0
     ok = ok && xq2(2 * q + 0) == 2.0 + 3.0;
     % -----------------------------------------------------------------------
     %
     return;
end

Input File: build/lib/example/octave/a_fun_reverse_xam.m