![]() |
Prev | Next | a_fun_reverse_xam.m | Headings |
function ok = a_fun_reverse_xam() % % load the Cppad Swig library m_cppad % % initialize return variable ok = true; % ----------------------------------------------------------------------- % number of dependent and independent variables n_dep = 1; n_ind = 3; % % create the independent variables ax xp = m_cppad.vec_double(n_ind); for i = [ 0 :(n_ind -1) ] xp(i) = i; end ax = m_cppad.independent(xp); % % create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2 ax_0 = ax(0); ax_1 = ax(1); ax_2 = ax(2); ay = m_cppad.vec_a_double(n_dep); ay(0) = ax_0 * ax_1 * ax_2; % % define af corresponding to f(x) = x_0 * x_1 * x_2 af = m_cppad.a_fun(ax, ay); % ----------------------------------------------------------------------- % define X(t) = (x_0 + t, x_1 + t, x_2 + t) % it follows that Y(t) = f(X(t)) = (x_0 + t) * (x_1 + t) * (x_2 + t) % and that Y'(0) = x_1 * x_2 + x_0 * x_2 + x_0 * x_1 % ----------------------------------------------------------------------- % zero order forward mode p = 0; xp(0) = 2.0; xp(1) = 3.0; xp(2) = 4.0; yp = af.forward(p, xp); ok = ok && yp(0) == 24.0; % ----------------------------------------------------------------------- % first order reverse (derivative of zero order forward) % define G( Y ) = y_0 = x_0 * x_1 * x_2 q = 1; yq1 = m_cppad.vec_double(n_dep); yq1(0) = 1.0; xq1 = af.reverse(q, yq1); % partial G w.r.t x_0 ok = ok && xq1(0) == 3.0 * 4.0 ; % partial G w.r.t x_1 ok = ok && xq1(1) == 2.0 * 4.0 ; % partial G w.r.t x_2 ok = ok && xq1(2) == 2.0 * 3.0 ; % ----------------------------------------------------------------------- % first order forward mode p = 1; xp(0) = 1.0; xp(1) = 1.0; xp(2) = 1.0; yp = af.forward(p, xp); ok = ok && yp(0) == 3.0*4.0 + 2.0*4.0 + 2.0*3.0; % ----------------------------------------------------------------------- % second order reverse (derivative of first order forward) % define G( y_0^0 , y_0^1 ) = y_0^1 % = x_1^0 * x_2^0 + x_0^0 * x_2^0 + x_0^0 * x_1^0 q = 2; yq2 = m_cppad.vec_double(n_dep * q); yq2(0 * q + 0) = 0.0; % partial of G w.r.t y_0^0 yq2(0 * q + 1) = 1.0; % partial of G w.r.t y_0^1 xq2 = af.reverse(q, yq2); % partial G w.r.t x_0^0 ok = ok && xq2(0 * q + 0) == 3.0 + 4.0; % partial G w.r.t x_1^0 ok = ok && xq2(1 * q + 0) == 2.0 + 4.0; % partial G w.r.t x_2^0 ok = ok && xq2(2 * q + 0) == 2.0 + 3.0; % ----------------------------------------------------------------------- % return; end