![]() |
Prev | Next | a_fun_reverse_xam.cpp | Headings |
# include <cstdio> # include <string> # include <cppad/swig/cppad_swig.hpp> bool a_fun_reverse_xam(void) { using cppad_swig::a_double; using cppad_swig::vec_bool; using cppad_swig::vec_int; using cppad_swig::vec_double; using cppad_swig::vec_a_double; using cppad_swig::a_fun; using cppad_swig::sparse_rc; using cppad_swig::sparse_rcv; using cppad_swig::sparse_jac_work; using cppad_swig::sparse_hes_work; using std::string; // // initialize return variable bool ok = true; //------------------------------------------------------------------------ // number of dependent and independent variables int n_dep = 1; int n_ind = 3; // // create the independent variables ax vec_double xp = cppad_swig::vec_double(n_ind); for(int i = 0; i < n_ind ; i++) { xp[i] = i; } vec_a_double ax = cppad_swig::independent(xp); // // create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2 a_double ax_0 = ax[0]; a_double ax_1 = ax[1]; a_double ax_2 = ax[2]; vec_a_double ay = cppad_swig::vec_a_double(n_dep); ay[0] = ax_0 * ax_1 * ax_2; // // define af corresponding to f(x) = x_0 * x_1 * x_2 a_fun af = cppad_swig::a_fun(ax, ay); // ----------------------------------------------------------------------- // define X(t) = (x_0 + t, x_1 + t, x_2 + t) // it follows that Y(t) = f(X(t)) = (x_0 + t) * (x_1 + t) * (x_2 + t) // and that Y'(0) = x_1 * x_2 + x_0 * x_2 + x_0 * x_1 // ----------------------------------------------------------------------- // zero order forward mode int p = 0; xp[0] = 2.0; xp[1] = 3.0; xp[2] = 4.0; vec_double yp = af.forward(p, xp); ok = ok && yp[0] == 24.0; // ----------------------------------------------------------------------- // first order reverse (derivative of zero order forward) // define G( Y ) = y_0 = x_0 * x_1 * x_2 int q = 1; vec_double yq1 = cppad_swig::vec_double(n_dep); yq1[0] = 1.0; vec_double xq1 = af.reverse(q, yq1); // partial G w.r.t x_0 ok = ok && xq1[0] == 3.0 * 4.0 ; // partial G w.r.t x_1 ok = ok && xq1[1] == 2.0 * 4.0 ; // partial G w.r.t x_2 ok = ok && xq1[2] == 2.0 * 3.0 ; // ----------------------------------------------------------------------- // first order forward mode p = 1; xp[0] = 1.0; xp[1] = 1.0; xp[2] = 1.0; yp = af.forward(p, xp); ok = ok && yp[0] == 3.0*4.0 + 2.0*4.0 + 2.0*3.0; // ----------------------------------------------------------------------- // second order reverse (derivative of first order forward) // define G( y_0^0 , y_0^1 ) = y_0^1 // = x_1^0 * x_2^0 + x_0^0 * x_2^0 + x_0^0 * x_1^0 q = 2; vec_double yq2 = cppad_swig::vec_double(n_dep * q); yq2[0 * q + 0] = 0.0; // partial of G w.r.t y_0^0 yq2[0 * q + 1] = 1.0; // partial of G w.r.t y_0^1 vec_double xq2 = af.reverse(q, yq2); // partial G w.r.t x_0^0 ok = ok && xq2[0 * q + 0] == 3.0 + 4.0; // partial G w.r.t x_1^0 ok = ok && xq2[1 * q + 0] == 2.0 + 4.0; // partial G w.r.t x_2^0 ok = ok && xq2[2 * q + 0] == 2.0 + 3.0; // ----------------------------------------------------------------------- // return( ok ); }