Prev Next optimize_fixed.cpp

@(@\newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\W}[1]{ \; #1 \; }@)@ This is cppad_mixed--20220519 documentation: Here is a link to its current documentation .
Optimize Fixed Effects: Example and Test

Model
Objective
First Order Partials
Optimizer Trace
Optimizer Warm Start
Source Code

Model
@[@ \B{p}( y_i | \theta , u ) \sim \B{N} ( u_i + \theta_0 , \theta_1^2 ) @]@@[@ \B{p}( u_i | \theta ) \sim \B{N} ( 0 , 1 ) @]@@[@ \B{p}( \theta ) \sim \B{N} ( 4 , 1 ) @]@It follows that the Laplace approximation is exact and @[@ \B{p}( y_i | \theta ) \sim \B{N} \left( \theta_0 , 1 + \theta_1^2 \right) @]@ The constraints on the fixed effect are @[@ - \infty \leq \theta_0 \leq + \infty \R{\; and \;} 0.1 \leq \theta_1 \leq 100 @]@

Objective
The corresponding objective for the fixed effects is equivalent to: @[@ F( \theta ) = \frac{1}{2} \left[ ( \theta_0 - 4 )^2 + ( \theta_1 - 4 )^2 + N \log \left( 1 + \theta_1^2 \right) + ( 1 + \theta_1^2)^{-1} \sum_{i=0}^{N-1} ( y_i - \theta_0 )^2 \right] @]@

First Order Partials
The first order partial derivatives of the objective are: @[@ F_0 ( \theta ) = ( \theta_0 - 4 ) - ( 1 + \theta_1^2)^{-1} \sum_{i=0}^{N-1} ( y_i - \theta_0 ) @]@ @[@ F_1 ( \theta ) = ( \theta_1 - 4 ) + N \left( 1 + \theta_1^2 \right)^{-1} \theta_1 - ( 1 + \theta_1^2)^{-2} \theta_1 \sum_{i=0}^{N-1} ( y_i - \theta_0 )^2 @]@

Optimizer Trace
This example uses the optimizer trace information; see trace_vec .

Optimizer Warm Start
This example uses the optimizer warm start information; see warm_start .

Source Code

# include <cppad/cppad.hpp>
# include <cppad/mixed/cppad_mixed.hpp>

namespace {
     using CppAD::log;
     using CppAD::AD;
     //
     using CppAD::mixed::d_sparse_rcv;
     using CppAD::mixed::a1_double;
     using CppAD::mixed::d_vector;
     using CppAD::mixed::a1_vector;
     //
     class mixed_derived : public cppad_mixed {
     private:
          const size_t          n_fixed_;
          const size_t          n_random_;
          const d_vector&       y_;
     // ----------------------------------------------------------------------
     public:
          // constructor
          mixed_derived(
               size_t                 n_fixed       ,
               size_t                 n_random      ,
               bool                   quasi_fixed   ,
               bool                   bool_sparsity ,
               const d_vector&       y              ) :
               cppad_mixed(
                    n_fixed, n_random, quasi_fixed, bool_sparsity
               )                     ,
               n_fixed_(n_fixed)     ,
               n_random_(n_random)   ,
               y_(y)
          {    assert( n_fixed == 2);
               assert( y_.size() == n_random_ );
          }
     // ----------------------------------------------------------------------
          // implementation of ran_likelihood
          a1_vector ran_likelihood(
               const a1_vector&         theta  ,
               const a1_vector&         u      ) override
          {
               assert( theta.size() == n_fixed_ );
               assert( u.size() == y_.size() );
               a1_vector vec(1);

               // initialize part of log-density that is always smooth
               vec[0] = 0.0;

               // sqrt_2pi = CppAD::sqrt(8.0 * CppAD::atan(1.0) );

               for(size_t i = 0; i < n_random_; i++)
               {    a1_double mu     = u[i] + theta[0];
                    a1_double sigma  = theta[1];
                    a1_double res    = (y_[i] - mu) / sigma;

                    // p(y_i | u, theta)
                    vec[0] += log(sigma) + res * res / 2.0;
                    // following term does not depend on fixed or random effects
                    // vec[0] += log(sqrt_2pi);

                    // p(u_i | theta)
                    vec[0] += u[i] * u[i] / 2.0;
                    // following term does not depend on fixed or random effects
                    // vec[0] += log(sqrt_2pi);
               }
               return vec;
          }
          // implementation of fix_likelihood
          a1_vector fix_likelihood(
               const a1_vector&         fixed_vec  ) override
          {
               assert( fixed_vec.size() == n_fixed_ );
               a1_vector vec(1);

               // initialize part of log-density that is smooth
               vec[0] = 0.0;

               // sqrt_2pi = CppAD::sqrt( 8.0 * CppAD::atan(1.0) );

               for(size_t j = 0; j < n_fixed_; j++)
               {    a1_double mu     = 4.0;
                    a1_double sigma  = 1.0;
                    a1_double res    = (fixed_vec[j] - mu) / sigma;

                    // This is a Gaussian term, so entire density is smooth
                    vec[0]  += res * res / 2.0;
                    // following term does not depend on fixed effects
                    // vec[0]  += log(sqrt_2pi * sigma);
               }
               return vec;
          }
     };
     // derivative of objective
     d_vector objective_fixed(
          const d_vector&       data   ,
          const d_vector&       theta  )
     {    d_vector dF(2);
          //
          // compute partials of F
          double sum   = 0.0;
          double sumsq = 0.0;
          for(size_t i = 0; i < data.size(); i++)
          {    sum   += theta[0] - data[i];
               sumsq += (theta[0] - data[i]) * (theta[0] - data[i]);
          }
          double den = 1.0 + theta[1] * theta[1];
          dF[0]  = (theta[0] - 4.0) + sum / den;
          dF[1]  = theta[1] - 4.0;
          dF[1] += double(data.size()) * theta[1] / den;
          dF[1] -= sumsq * theta[1]  / (den * den);
          //
          return dF;
     }
}

bool optimize_fixed_xam(void)
{
     bool   ok = true;
     double inf = std::numeric_limits<double>::infinity();
     double tol = 1e-8;

     size_t n_data   = 10;
     size_t n_fixed  = 2;
     size_t n_random = n_data;
     d_vector
          fixed_lower(n_fixed), fixed_in(n_fixed), fixed_upper(n_fixed);
     fixed_lower[0] = - inf; fixed_in[0] = 2.0; fixed_upper[0] = inf;
     fixed_lower[1] = .01;   fixed_in[1] = 0.5; fixed_upper[1] = inf;
     //
     // explicit constriants (in addition to l1 terms)
     d_vector fix_constraint_lower(0), fix_constraint_upper(0);
     //
     d_vector data(n_data), random_in(n_random);
     for(size_t i = 0; i < n_data; i++)
     {    data[i]       = double(i + 1);
          random_in[i] = 0.0;
     }

     // object that is derived from cppad_mixed
     bool quasi_fixed   = true;
     bool bool_sparsity = true;
     mixed_derived mixed_object(
               n_fixed, n_random, quasi_fixed, bool_sparsity, data
     );
     mixed_object.initialize(fixed_in, random_in);

     // optimize the fixed effects using quasi-Newton method
     std::string fixed_ipopt_options =
          "Integer print_level               0\n"
          "String  sb                        yes\n"
          "String  derivative_test           adaptive\n"
          "String  derivative_test_print_all yes\n"
          "Integer max_iter                  15\n"
     ;
     std::string random_ipopt_options =
          "Integer print_level     0\n"
          "String  sb              yes\n"
          "String  derivative_test second-order\n"
          "Numeric tol             1e-8\n"
     ;
     //
     d_vector random_lower(n_random), random_upper(n_random);
     for(size_t i = 0; i < n_random; i++)
     {    random_lower[i] = -inf;
          random_upper[i] = +inf;
     }
     // ------------------------------------------------------------------
     // optimize with tolerance 1e-3
     std::string temp_string = fixed_ipopt_options + "Numeric tol 1e-3\n";
     d_vector fixed_scale = fixed_in;
     CppAD::mixed::fixed_solution solution = mixed_object.optimize_fixed(
          temp_string,
          random_ipopt_options,
          fixed_lower,
          fixed_upper,
          fix_constraint_lower,
          fix_constraint_upper,
          fixed_scale,
          fixed_in,
          random_lower,
          random_upper,
          random_in
     );
     d_vector fixed_out = solution.fixed_opt;
     // ------------------------------------------------------------------
     // continue optimization, from previous, with new tolerance of 1e-8
     temp_string = fixed_ipopt_options + "Numeric tol 1e-8\n";
     fixed_in    = fixed_out;
     solution    = mixed_object.optimize_fixed(
          temp_string,
          random_ipopt_options,
          fixed_lower,
          fixed_upper,
          fix_constraint_lower,
          fix_constraint_upper,
          fixed_scale,
          fixed_in,
          random_lower,
          random_upper,
          random_in,
          solution.warm_start
     );
     fixed_out = solution.fixed_opt;
     // ------------------------------------------------------------------

     // deriative of objective at fixed_in and fixed_out
     d_vector dF_scale = objective_fixed(data, fixed_scale);
     d_vector dF_out   = objective_fixed(data, fixed_out);

     // scaling for objective
     double scale = std::max(
          std::fabs( dF_scale[0] ), std::fabs( dF_scale[1] )
     );
     scale = 1.0 / scale;

     // Note that no constraints are active, (not even the l1 terms)
     // so the partials should be zero.
     ok &= fabs( scale * dF_out[0] ) <= 5. * tol;
     ok &= fabs( scale * dF_out[1] ) <= 5. * tol;

     return ok;
}

Input File: example/user/optimize_fixed.cpp