|
Prev | Next | sparse_rcv_xam.py | Headings |
def sparse_rcv_xam() :
#
# load the Cppad Swig library
import py_cppad
#
# initialize return variable
ok = True
# ---------------------------------------------------------------------
#
# create sparsity pattern for n by n identity matrix
pattern = py_cppad.sparse_rc()
n = 5
pattern.resize(n, n, n)
for k in range( n ) :
pattern.put(k, k, k)
#
#
# create n by n sparse representation of identity matrix
matrix = py_cppad.sparse_rcv(pattern)
for k in range( n ) :
matrix.put(k, 1.0)
#
#
# row, column indices
row = matrix.row()
col = matrix.col()
val = matrix.val()
#
# check results
for k in range( n ) :
ok = ok and row[k] == k
ok = ok and col[k] == k
ok = ok and val[k] == 1.0
#
#
# For this case, row_major and col_major order are same as original order
row_major = matrix.row_major()
col_major = matrix.col_major()
for k in range( n ) :
ok = ok and row_major[k] == k
ok = ok and col_major[k] == k
#
#
return( ok )
#