|
Prev | Next | sparse_rcv_xam.m | Headings |
function ok = sparse_rcv_xam()
%
% load the Cppad Swig library
m_cppad
%
% initialize return variable
ok = true;
% -----------------------------------------------------------------------
%
% create sparsity pattern for n by n identity matrix
pattern = m_cppad.sparse_rc();
n = 5;
pattern.resize(n, n, n);
for k = [ 0 :(n-1) ]
pattern.put(k, k, k);
end
%
% create n by n sparse representation of identity matrix
matrix = m_cppad.sparse_rcv(pattern);
for k = [ 0 :(n-1) ]
matrix.put(k, 1.0);
end
%
% row, column indices
row = matrix.row();
col = matrix.col();
val = matrix.val();
%
% check results
for k = [ 0 :(n-1) ]
ok = ok && row(k) == k;
ok = ok && col(k) == k;
ok = ok && val(k) == 1.0;
end
%
% For this case, row_major and col_major order are same as original order
row_major = matrix.row_major();
col_major = matrix.col_major();
for k = [ 0 :(n-1) ]
ok = ok && row_major(k) == k;
ok = ok && col_major(k) == k;
end
%
return;
end