|
Prev | Next | sparse_jac_pattern_xam.cpp | Headings |
# include <cstdio>
# include <string>
# include <cppad/swig/cppad_swig.hpp>
bool sparse_jac_pattern_xam(void) {
using cppad_swig::a_double;
using cppad_swig::vec_bool;
using cppad_swig::vec_int;
using cppad_swig::vec_double;
using cppad_swig::vec_a_double;
using cppad_swig::a_fun;
using cppad_swig::sparse_rc;
using cppad_swig::sparse_rcv;
using cppad_swig::sparse_jac_work;
using cppad_swig::sparse_hes_work;
using std::string;
//
// initialize return variable
bool ok = true;
//------------------------------------------------------------------------
// number of dependent and independent variables
int n = 3;
//
// create the independent variables ax
vec_double x = cppad_swig::vec_double(n);
for(int i = 0; i < n ; i++) {
x[i] = i + 2.0;
}
vec_a_double ax = cppad_swig::independent(x);
//
// create dependent variables ay with ay[i] = ax[j]
// where i = mod(j + 1, n)
vec_a_double ay = cppad_swig::vec_a_double(n);
for(int j = 0; j < n ; j++) {
int i = j+1;
if( i >= n ) {
i = i - n;
}
a_double ay_i = ax[j];
ay[i] = ay_i;
}
//
// define af corresponding to f(x)
a_fun af = cppad_swig::a_fun(ax, ay);
//
// sparsity pattern for identity matrix
sparse_rc pat_in = cppad_swig::sparse_rc();
pat_in.resize(n, n, n);
for(int k = 0; k < n; k++) {
pat_in.put(k, k, k);
}
//
// loop over forward and reverse mode
for(int mode = 0; mode < 2; mode++) {
sparse_rc pat_out = cppad_swig::sparse_rc();
if( mode == 0 ) {
af.for_jac_sparsity(pat_in, pat_out);
}
if( mode == 1 ) {
af.rev_jac_sparsity(pat_in, pat_out);
}
//
// check that result is sparsity pattern for Jacobian
ok = ok && n == pat_out.nnz();
vec_int col_major = pat_out.col_major();
vec_int row = pat_out.row();
vec_int col = pat_out.col();
for(int k = 0; k < n; k++) {
int ell = col_major[k];
int r = row[ell];
int c = col[ell];
int i = c+1;
if( i >= n ) {
i = i - n;
}
ok = ok && c == k;
ok = ok && r == i;
}
}
//
return( ok );
}