|
Prev | Next | a_fun_reverse_xam.py | Headings |
def a_fun_reverse_xam() :
#
# load the Cppad Swig library
import py_cppad
#
# initialize return variable
ok = True
# ---------------------------------------------------------------------
# number of dependent and independent variables
n_dep = 1
n_ind = 3
#
# create the independent variables ax
xp = py_cppad.vec_double(n_ind)
for i in range( n_ind ) :
xp[i] = i
#
ax = py_cppad.independent(xp)
#
# create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
ax_0 = ax[0]
ax_1 = ax[1]
ax_2 = ax[2]
ay = py_cppad.vec_a_double(n_dep)
ay[0] = ax_0 * ax_1 * ax_2
#
# define af corresponding to f(x) = x_0 * x_1 * x_2
af = py_cppad.a_fun(ax, ay)
# -----------------------------------------------------------------------
# define X(t) = (x_0 + t, x_1 + t, x_2 + t)
# it follows that Y(t) = f(X(t)) = (x_0 + t) * (x_1 + t) * (x_2 + t)
# and that Y'(0) = x_1 * x_2 + x_0 * x_2 + x_0 * x_1
# -----------------------------------------------------------------------
# zero order forward mode
p = 0
xp[0] = 2.0
xp[1] = 3.0
xp[2] = 4.0
yp = af.forward(p, xp)
ok = ok and yp[0] == 24.0
# -----------------------------------------------------------------------
# first order reverse (derivative of zero order forward)
# define G( Y ) = y_0 = x_0 * x_1 * x_2
q = 1
yq1 = py_cppad.vec_double(n_dep)
yq1[0] = 1.0
xq1 = af.reverse(q, yq1)
# partial G w.r.t x_0
ok = ok and xq1[0] == 3.0 * 4.0
# partial G w.r.t x_1
ok = ok and xq1[1] == 2.0 * 4.0
# partial G w.r.t x_2
ok = ok and xq1[2] == 2.0 * 3.0
# -----------------------------------------------------------------------
# first order forward mode
p = 1
xp[0] = 1.0
xp[1] = 1.0
xp[2] = 1.0
yp = af.forward(p, xp)
ok = ok and yp[0] == 3.0*4.0 + 2.0*4.0 + 2.0*3.0
# -----------------------------------------------------------------------
# second order reverse (derivative of first order forward)
# define G( y_0^0 , y_0^1 ) = y_0^1
# = x_1^0 * x_2^0 + x_0^0 * x_2^0 + x_0^0 * x_1^0
q = 2
yq2 = py_cppad.vec_double(n_dep * q)
yq2[0 * q + 0] = 0.0 # partial of G w.r.t y_0^0
yq2[0 * q + 1] = 1.0 # partial of G w.r.t y_0^1
xq2 = af.reverse(q, yq2)
# partial G w.r.t x_0^0
ok = ok and xq2[0 * q + 0] == 3.0 + 4.0
# partial G w.r.t x_1^0
ok = ok and xq2[1 * q + 0] == 2.0 + 4.0
# partial G w.r.t x_2^0
ok = ok and xq2[2 * q + 0] == 2.0 + 3.0
# -----------------------------------------------------------------------
#
return( ok )
#