![]() |
Prev | Next | a_fun_jacobian_xam.cpp | Headings |
# include <cstdio> # include <string> # include <cppad/swig/cppad_swig.hpp> bool a_fun_jacobian_xam(void) { using cppad_swig::a_double; using cppad_swig::vec_bool; using cppad_swig::vec_int; using cppad_swig::vec_double; using cppad_swig::vec_a_double; using cppad_swig::a_fun; using cppad_swig::sparse_rc; using cppad_swig::sparse_rcv; using cppad_swig::sparse_jac_work; using cppad_swig::sparse_hes_work; using std::string; // // initialize return variable bool ok = true; //------------------------------------------------------------------------ // number of dependent and independent variables int n_dep = 1; int n_ind = 3; // // create the independent variables ax vec_double x = cppad_swig::vec_double(n_ind); for(int i = 0; i < n_ind ; i++) { x[i] = i + 2.0; } vec_a_double ax = cppad_swig::independent(x); // // create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2 a_double ax_0 = ax[0]; a_double ax_1 = ax[1]; a_double ax_2 = ax[2]; vec_a_double ay = cppad_swig::vec_a_double(n_dep); ay[0] = ax_0 * ax_1 * ax_2; // // define af corresponding to f(x) = x_0 * x_1 * x_2 a_fun af = cppad_swig::a_fun(ax, ay); // // compute the Jacobian f'(x) = ( x_1*x_2, x_0*x_2, x_0*x_1 ) vec_double fp = af.jacobian(x); // // check Jacobian double x_0 = x[0]; double x_1 = x[1]; double x_2 = x[2]; ok = ok && fp[0 * n_ind + 0] == x_1 * x_2 ; ok = ok && fp[0 * n_ind + 1] == x_0 * x_2 ; ok = ok && fp[0 * n_ind + 2] == x_0 * x_1 ; // return( ok ); }