|
Prev | Next | a_fun_jacobian_xam.cpp | Headings |
# include <cstdio>
# include <string>
# include <cppad/swig/cppad_swig.hpp>
bool a_fun_jacobian_xam(void) {
using cppad_swig::a_double;
using cppad_swig::vec_bool;
using cppad_swig::vec_int;
using cppad_swig::vec_double;
using cppad_swig::vec_a_double;
using cppad_swig::a_fun;
using cppad_swig::sparse_rc;
using cppad_swig::sparse_rcv;
using cppad_swig::sparse_jac_work;
using cppad_swig::sparse_hes_work;
using std::string;
//
// initialize return variable
bool ok = true;
//------------------------------------------------------------------------
// number of dependent and independent variables
int n_dep = 1;
int n_ind = 3;
//
// create the independent variables ax
vec_double x = cppad_swig::vec_double(n_ind);
for(int i = 0; i < n_ind ; i++) {
x[i] = i + 2.0;
}
vec_a_double ax = cppad_swig::independent(x);
//
// create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
a_double ax_0 = ax[0];
a_double ax_1 = ax[1];
a_double ax_2 = ax[2];
vec_a_double ay = cppad_swig::vec_a_double(n_dep);
ay[0] = ax_0 * ax_1 * ax_2;
//
// define af corresponding to f(x) = x_0 * x_1 * x_2
a_fun af = cppad_swig::a_fun(ax, ay);
//
// compute the Jacobian f'(x) = ( x_1*x_2, x_0*x_2, x_0*x_1 )
vec_double fp = af.jacobian(x);
//
// check Jacobian
double x_0 = x[0];
double x_1 = x[1];
double x_2 = x[2];
ok = ok && fp[0 * n_ind + 0] == x_1 * x_2 ;
ok = ok && fp[0 * n_ind + 1] == x_0 * x_2 ;
ok = ok && fp[0 * n_ind + 2] == x_0 * x_1 ;
//
return( ok );
}