|
Prev | Next | a_fun_hessian_xam.py | Headings |
def a_fun_hessian_xam() :
#
# load the Cppad Swig library
import py_cppad
#
# initialize return variable
ok = True
# ---------------------------------------------------------------------
# number of dependent and independent variables
n_dep = 1
n_ind = 3
#
# create the independent variables ax
x = py_cppad.vec_double(n_ind)
for i in range( n_ind ) :
x[i] = i + 2.0
#
ax = py_cppad.independent(x)
#
# create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
ax_0 = ax[0]
ax_1 = ax[1]
ax_2 = ax[2]
ay = py_cppad.vec_a_double(n_dep)
ay[0] = ax_0 * ax_1 * ax_2
#
# define af corresponding to f(x) = x_0 * x_1 * x_2
af = py_cppad.a_fun(ax, ay)
#
# g(x) = w_0 * f_0 (x) = f(x)
w = py_cppad.vec_double(n_dep)
w[0] = 1.0
#
# compute Hessian
fpp = af.hessian(x, w)
#
# [ 0.0 , x_2 , x_1 ]
# f''(x) = [ x_2 , 0.0 , x_0 ]
# [ x_1 , x_0 , 0.0 ]
ok = ok and fpp[0 * n_ind + 0] == 0.0
ok = ok and fpp[0 * n_ind + 1] == x[2]
ok = ok and fpp[0 * n_ind + 2] == x[1]
#
ok = ok and fpp[1 * n_ind + 0] == x[2]
ok = ok and fpp[1 * n_ind + 1] == 0.0
ok = ok and fpp[1 * n_ind + 2] == x[0]
#
ok = ok and fpp[2 * n_ind + 0] == x[1]
ok = ok and fpp[2 * n_ind + 1] == x[0]
ok = ok and fpp[2 * n_ind + 2] == 0.0
#
return( ok )
#