|
Prev | Next | a_fun_forward_xam.py | Headings |
def a_fun_forward_xam() :
#
# load the Cppad Swig library
import py_cppad
#
# initialize return variable
ok = True
# ---------------------------------------------------------------------
# number of dependent and independent variables
n_dep = 1
n_ind = 2
#
# create the independent variables ax
xp = py_cppad.vec_double(n_ind)
for i in range( n_ind ) :
xp[i] = i + 1.0
#
ax = py_cppad.independent(xp)
#
# create dependent varialbes ay with ay0 = ax0 * ax1
ax0 = ax[0]
ax1 = ax[1]
ay = py_cppad.vec_a_double(n_dep)
ay[0] = ax0 * ax1
#
# define af corresponding to f(x) = x0 * x1
af = py_cppad.a_fun(ax, ay)
#
# define X(t) = (3 + t, 2 + t)
# it follows that Y(t) = f(X(t)) = (3 + t) * (2 + t)
#
# Y(0) = 6 and p ! = 1
p = 0
xp[0] = 3.0
xp[1] = 2.0
yp = af.forward(p, xp)
ok = ok and yp[0] == 6.0
#
# first order Taylor coefficients for X(t)
p = 1
xp[0] = 1.0
xp[1] = 1.0
#
# first order Taylor coefficient for Y(t)
# Y'(0) = 3 + 2 = 5 and p ! = 1
yp = af.forward(p, xp)
ok = ok and yp[0] == 5.0
#
# second order Taylor coefficients for X(t)
p = 2
xp[0] = 0.0
xp[1] = 0.0
#
# second order Taylor coefficient for Y(t)
# Y''(0) = 2.0 and p ! = 2
yp = af.forward(p, xp)
ok = ok and yp[0] == 1.0
#
return( ok )
#