![]() |
Prev | Next | a_fun_forward_xam.cpp | Headings |
# include <cstdio> # include <string> # include <cppad/swig/cppad_swig.hpp> bool a_fun_forward_xam(void) { using cppad_swig::a_double; using cppad_swig::vec_bool; using cppad_swig::vec_int; using cppad_swig::vec_double; using cppad_swig::vec_a_double; using cppad_swig::a_fun; using cppad_swig::sparse_rc; using cppad_swig::sparse_rcv; using cppad_swig::sparse_jac_work; using cppad_swig::sparse_hes_work; using std::string; // // initialize return variable bool ok = true; //------------------------------------------------------------------------ // number of dependent and independent variables int n_dep = 1; int n_ind = 2; // // create the independent variables ax vec_double xp = cppad_swig::vec_double(n_ind); for(int i = 0; i < n_ind ; i++) { xp[i] = i + 1.0; } vec_a_double ax = cppad_swig::independent(xp); // // create dependent varialbes ay with ay0 = ax0 * ax1 a_double ax0 = ax[0]; a_double ax1 = ax[1]; vec_a_double ay = cppad_swig::vec_a_double(n_dep); ay[0] = ax0 * ax1; // // define af corresponding to f(x) = x0 * x1 a_fun af = cppad_swig::a_fun(ax, ay); // // define X(t) = (3 + t, 2 + t) // it follows that Y(t) = f(X(t)) = (3 + t) * (2 + t) // // Y(0) = 6 and p ! = 1 int p = 0; xp[0] = 3.0; xp[1] = 2.0; vec_double yp = af.forward(p, xp); ok = ok && yp[0] == 6.0; // // first order Taylor coefficients for X(t) p = 1; xp[0] = 1.0; xp[1] = 1.0; // // first order Taylor coefficient for Y(t) // Y'(0) = 3 + 2 = 5 and p ! = 1 yp = af.forward(p, xp); ok = ok && yp[0] == 5.0; // // second order Taylor coefficients for X(t) p = 2; xp[0] = 0.0; xp[1] = 0.0; // // second order Taylor coefficient for Y(t) // Y''(0) = 2.0 and p ! = 2 yp = af.forward(p, xp); ok = ok && yp[0] == 1.0; // return( ok ); }