|
Prev | Next | a_fun_forward_xam.cpp | Headings |
# include <cstdio>
# include <string>
# include <cppad/swig/cppad_swig.hpp>
bool a_fun_forward_xam(void) {
using cppad_swig::a_double;
using cppad_swig::vec_bool;
using cppad_swig::vec_int;
using cppad_swig::vec_double;
using cppad_swig::vec_a_double;
using cppad_swig::a_fun;
using cppad_swig::sparse_rc;
using cppad_swig::sparse_rcv;
using cppad_swig::sparse_jac_work;
using cppad_swig::sparse_hes_work;
using std::string;
//
// initialize return variable
bool ok = true;
//------------------------------------------------------------------------
// number of dependent and independent variables
int n_dep = 1;
int n_ind = 2;
//
// create the independent variables ax
vec_double xp = cppad_swig::vec_double(n_ind);
for(int i = 0; i < n_ind ; i++) {
xp[i] = i + 1.0;
}
vec_a_double ax = cppad_swig::independent(xp);
//
// create dependent varialbes ay with ay0 = ax0 * ax1
a_double ax0 = ax[0];
a_double ax1 = ax[1];
vec_a_double ay = cppad_swig::vec_a_double(n_dep);
ay[0] = ax0 * ax1;
//
// define af corresponding to f(x) = x0 * x1
a_fun af = cppad_swig::a_fun(ax, ay);
//
// define X(t) = (3 + t, 2 + t)
// it follows that Y(t) = f(X(t)) = (3 + t) * (2 + t)
//
// Y(0) = 6 and p ! = 1
int p = 0;
xp[0] = 3.0;
xp[1] = 2.0;
vec_double yp = af.forward(p, xp);
ok = ok && yp[0] == 6.0;
//
// first order Taylor coefficients for X(t)
p = 1;
xp[0] = 1.0;
xp[1] = 1.0;
//
// first order Taylor coefficient for Y(t)
// Y'(0) = 3 + 2 = 5 and p ! = 1
yp = af.forward(p, xp);
ok = ok && yp[0] == 5.0;
//
// second order Taylor coefficients for X(t)
p = 2;
xp[0] = 0.0;
xp[1] = 0.0;
//
// second order Taylor coefficient for Y(t)
// Y''(0) = 2.0 and p ! = 2
yp = af.forward(p, xp);
ok = ok && yp[0] == 1.0;
//
return( ok );
}