# include <cppad/cppad.hpp>
# include <cppad/mixed/cppad_mixed.hpp>
namespace {
using CppAD::log;
using CppAD::AD;
//
using CppAD::mixed::d_sparse_rcv;
using CppAD::mixed::a1_double;
using CppAD::mixed::d_vector;
using CppAD::mixed::a1_vector;
//
class mixed_derived : public cppad_mixed {
private:
const size_t n_fixed_;
const size_t n_random_;
const d_vector& y_;
// ----------------------------------------------------------------------
public:
// constructor
mixed_derived(
size_t n_fixed ,
size_t n_random ,
bool quasi_fixed ,
bool bool_sparsity ,
const d_sparse_rcv& A_rcv ,
const d_vector& y ) :
cppad_mixed(
n_fixed, n_random, quasi_fixed, bool_sparsity, A_rcv
) ,
n_fixed_(n_fixed) ,
n_random_(n_random) ,
y_(y)
{ assert( n_fixed == 2);
assert( y_.size() == n_random_ );
}
// implementation of ran_likelihood
a1_vector ran_likelihood(
const a1_vector& theta ,
const a1_vector& u ) override
{
assert( theta.size() == n_fixed_ );
assert( u.size() == y_.size() );
a1_vector vec(1);
// initialize part of log-density that is always smooth
vec[0] = 0.0;
// sqrt_2pi = CppAD::sqrt(8.0 * CppAD::atan(1.0) );
for(size_t i = 0; i < n_random_; i++)
{ a1_double mu = u[i] + theta[0];
a1_double sigma = theta[1];
a1_double res = (y_[i] - mu) / sigma;
// p(y_i | u, theta)
vec[0] += log(sigma) + res * res / 2.0;
// following term does not depend on fixed or random effects
// vec[0] += log(sqrt_2pi);
// p(u_i | theta)
vec[0] += u[i] * u[i] / 2.0;
// following term does not depend on fixed or random effects
// vec[0] += log(sqrt_2pi);
}
return vec;
}
// implementation of fix_likelihood
a1_vector fix_likelihood(
const a1_vector& fixed_vec ) override
{
assert( fixed_vec.size() == n_fixed_ );
a1_vector vec(1);
// initialize part of log-density that is smooth
vec[0] = 0.0;
// compute these factors once
a1_double sqrt_2pi = CppAD::sqrt( 8.0 * CppAD::atan(1.0) );
for(size_t j = 0; j < n_fixed_; j++)
{ a1_double mu = 4.0;
a1_double sigma = 1.0;
a1_double res = (fixed_vec[j] - mu) / sigma;
// This is a Gaussian term, so entire density is smooth
vec[0] += log(sqrt_2pi * sigma) + res * res / 2.0;
}
return vec;
}
};
// ----------------------------------------------------------------------
double sum_random_effects(
size_t n_random, const d_sparse_rcv& A_rcv
)
{
double inf = std::numeric_limits<double>::infinity();
size_t n_fixed = 2;
size_t n_data = n_random;
d_vector
fixed_lower(n_fixed), fixed_in(n_fixed), fixed_upper(n_fixed);
fixed_lower[0] = - inf; fixed_in[0] = 2.0; fixed_upper[0] = inf;
fixed_lower[1] = .01; fixed_in[1] = 0.5; fixed_upper[1] = inf;
//
// explicit constriants (in addition to l1 terms)
d_vector fix_constraint_lower(0), fix_constraint_upper(0);
//
d_vector data(n_data), random_in(n_random);
for(size_t i = 0; i < n_data; i++)
{ data[i] = double(i + 1);
random_in[i] = 0.0;
}
// object that is derived from cppad_mixed
bool quasi_fixed = false;
bool bool_sparsity = false;
mixed_derived mixed_object(
n_fixed, n_random, quasi_fixed, bool_sparsity, A_rcv, data
);
mixed_object.initialize(fixed_in, random_in);
// optimize the fixed effects using quasi-Newton method
std::string fixed_ipopt_options =
"Integer print_level 0\n"
"String sb yes\n"
"String derivative_test adaptive\n"
"String derivative_test_print_all yes\n"
"Numeric tol 1e-8\n"
;
// random_ipopt_options is non-empty, so using ipopt for random effects
std::string random_ipopt_options =
"Integer print_level 0\n"
"String sb yes\n"
"String derivative_test second-order\n"
"Numeric tol 1e-8\n"
;
d_vector random_lower(n_random), random_upper(n_random);
for(size_t i = 0; i < n_random; i++)
{ random_lower[i] = -inf;
random_upper[i] = +inf;
}
// optmize fixed effects
d_vector fixed_scale = fixed_in;
CppAD::mixed::fixed_solution solution = mixed_object.optimize_fixed(
fixed_ipopt_options,
random_ipopt_options,
fixed_lower,
fixed_upper,
fix_constraint_lower,
fix_constraint_upper,
fixed_scale,
fixed_in,
random_lower,
random_upper,
random_in
);
d_vector fixed_out = solution.fixed_opt;
//
// corresponding optimal random effects
d_vector random_out = mixed_object.optimize_random(
random_ipopt_options,
fixed_out,
random_lower,
random_upper,
random_in
);
// compute return value
double sum = 0.0;
for(size_t i = 0; i < n_random; i++)
sum += random_out[i];
//
return sum;
}
}
bool ran_constraint_xam(void)
{ bool ok = true;
double tol = 1e-8;
size_t n_random = 10;
// empty matrix (no constraints)
d_sparse_rcv A_empty;
double sum = sum_random_effects(n_random, A_empty);
ok &= fabs(sum) > 0.5;
// constrain sum of random effects to be zero
CppAD::mixed::sparse_rc A_pattern(1, n_random, n_random);
for(size_t k = 0; k < n_random; k++)
A_pattern.set(k, 0, k);
d_sparse_rcv A_rcv(A_pattern);
for(size_t k = 0; k < n_random; k++)
A_rcv.set(k, 1.0);
sum = sum_random_effects(n_random, A_rcv);
ok &= fabs(sum) < 2.0 * tol;
return ok;
}